
Physics informed deep-learning approach

enhanced by POD for forecasting solutions to

time-dependent PDE’s

Jennifer Zheng, Tan Bui-Thanh, & Krishnanunni C G

Oden Institute for Computational Engineering and Sciences
Moncrief Summer Internship

August 2021

Abstract

This project focus on forecasting solution of time-dependent PDE’s
using a neural network based surrogate model. The first stage in this
approach is to perform a POD based model reduction to approximate the
system solution u(t, x). The solution is represented as a linear combina-
tion of orthonormal modes by computing the singular value decomposition
of a snapshot matrix. A neural network is then employed to learn the non-
linear map between the POD coefficients αr(t), an r dimensional output,
and the time instants which are 1 dimensional inputs. However, this ap-
proach can only predict solutions within the training data set and fails
at forecasting the solutions accurately at a future time instant outside
the training data set. In order to deal with this issue, we incorporate a
physics term in the loss function, which is the discretized equation for
the POD coefficients α(t). Thus the method suitably combines data with
physics (governing PDE) to arrive at a good surrogate model for the un-
derlying process. Numerical results on a linear advection equation show
that by encoding the physics into the training process, one can forecast
the solution accurately at a future time instant.

1

Contents

1 Introduction 3

2 Problem definition 3
2.1 1D PDE Problem- The Advection equation 3
2.2 Proper Orthogonal decomposition 4

3 Implementation 4
3.1 Discretization . 4

3.1.1 Matrix representation of the method 5
3.2 Data Generation through Model Order Reduction 5
3.3 Physics informed neural network 7

4 Numerical Experiments and Results 8
4.1 Boundary Conditions and Initial Conditions 8
4.2 Hyperparameters . 9
4.3 Prediction within the given time range of training data set 9
4.4 Predictions outside the time range of the given training data set 10

4.4.1 Optimal result without physics term 10
4.4.2 Optimal PINN result . 10

4.5 Comparison Across Models . 11

5 Conclusion 11

2

1 Introduction

Partial differential equations (PDE’s) are crucial to modeling physical problems
in many fields, and solving PDE’s accurately and efficiently has always been
a challenge. As data-driven machine learning, especially deep learning, has
emerged as a popular technique in many fields. It has also become a power-
ful technique in solving numerical PDE problems. However, with limited data,
purely data-driven DNN model is often not accurate enough leading to erro-
neous predictions due to the over fitting problem. Therefore, it is imperative
to encode the physics into the training process for accurate prediction of the
solution. Physics-informed neural networks (PINNs) integrates seamlessly data
and mathematical physics models, even in partially understood, uncertain and
high-dimensional contexts [9, 4]. PINNs have been found to be well suited for
the solution of forward and inverse problems related to several different types of
PDEs [9]. Over the past few years, PINNs have been successfully implemented
for problems such as simulating vortex-induced vibrations, denoising of 4D- flow
magnetic resonance imaging [5], simulation of turbulence [6] etc.

Further, to accelerate the training process, one may incorporate model order
reduction [8, 2] into the learning process. In particular, the Proper orthogonal
decomposition method has emerged as a popular method for reducing the com-
plexity of computer intensive simulations [1]. In this work, we perform a POD
based model reduction to approximate the solution u(t, x) to a time-dependent
PDE. A neural network is employed to learn the variation of POD coefficients
with respect to time. In order to ensure accurate predictions of the solution
outside the domain of the training data, a physics informed term is further in-
corporated in the loss function. Thus the method suitably combines data with
physics (governing PDE) to arrive at a good surrogate model for the underlying
process.

2 Problem definition

2.1 1D PDE Problem- The Advection equation

We consider the 1D advection equation as follows:

∂u

∂t
+ a

∂u

∂x
= f(x, t) (1)

where, u(x, t) is the solution to the PDE at time t and position x.

Now, given the field measured data set X = {u(x̃, t1), u(x̃, t2), . . . u(x̃, tN)},
where t1, t2, . . . tN represents the observation instants and x̃ represents finite
observation points in space. Note that matrix X is then known as the snapshot
matrix. Our goal is to predict the solution u(x̃, tk), where k > N or k < N .
Note that the case of predicting solution u for k < N is relatively easy since
neural networks gives excellent performance with regard to interpolating the
solutions inside the data set. However, for the case k > N , the neural networks

3

may not be able to give good predictions since this corresponds to extrapolating
the solution outside the data set.

2.2 Proper Orthogonal decomposition

As the first step, we construct the so-called snapshot matrix X, as follows:

X =

 | |
u1 . . . uN

| |

 ∈ RM×N , where un =

u
n
1
...
unM

 . (2)

Next, using the singular value decomposition (SVD), the matrix X can be de-
composed into two orthogonal matrices U ∈ RM×M and V ∈ RN×N , and a
matrix Σ ∈ RM×N that has nonnegative entries on the diagonal and zeros off
the diagonal:

X = UΣVT. (3)

The key idea of ROM is in introducing a truncated SVD, where X is approxi-
mated as:

X ≈ ŨΣ̃ṼT, (4)

where Ũ ∈ RM×r, Ṽ ∈ Rr×N and Σ̃ ∈ Rr×r with r � M . Then, the solution
u(t) can be approximated as

u(t) ≈ Ũα(t), (5)

where α ∈ Rr is the time-dependent coefficient vector. By applying orthogo-
nality of Ũ , Eq. 1 can be expressed as:

dα(t)

dt
+ ŨTAŨα(t) = ŨTf(t), (6)

where A ∈ RM×M is the linear operator of the advection term and f ∈ RM

is the discretized source term. This procedure is called the proper orthogonal
decomposition (POD). The aim of POD is to produce low-rank dynamical sys-
tems capable of accurately modeling the full spatio-temporal evolution of the
governing system. Therefore, one only needs to estimate the unknown coeffi-
cients ~α(t) ∈ Rr in lower dimensional space. In order to predict the solution
at unknown time with known position information, our approach to solving the
problem is to estimate the ~α vectors at each unknown time. The estimations
will be implemented using data-driven machine learning methods to predict αi

at unknown times.

3 Implementation

3.1 Discretization

For demonstration, we create the snapshot matrix X by generating synthetic
data. For this, we discretize the advection equation (Eq. 1) with the upwind

4

scheme, which was first proposed by Courant et al. [3]. The first-order upwind
scheme follows the equation below [7]:

un+1
i − uni

∆t
+ a

uni − uni−1
∆x

= 0 for a > 0

Where, uni representing the solution at position i and time n. We perform
the upwind scheme at each time t and use it to create the snapshot matrix X.

3.1.1 Matrix representation of the method

For easier computation in later steps, we represent part of the upwind-scheme
by a matrix. Instead of the equation from the section above, we use a matrix A
as a representation of the position difference among each iteration, specifically,
uA> = a ∗ (ui − ui−1)/∆x.

To construct the coefficient matrix A, we first construct a function with the
part of the function that we are trying to replace. Each column of A is then
constructed with the input of the function being set to the corresponding unit
vector.

3.2 Data Generation through Model Order Reduction

To ensure efficiency of the computation, one thing to note is the size of the train-
ing and testing data matrices. While we select ∆t = 0.0001 for the time range
of 0 to 1 second and ∆x = 0.001 for the discretization of the position variable,
we have an input data size of 1001 × 10001. A data matrix of this dimension
would result in significant expense in computation, especially in running the
nerual networks, we thus seek to reduce the dimension of the matrix. We first
plot the singular values of the snapshot matrix, which are the diagonal entries
of Σ. We can observe from Figure 1 that there is a significant truncation at the
column index of 169. The singular values after column 169 have values close to
zero. This suggests that the first 169 singular vectors hold the most important
features of the matrix. Thus our first method is to select the first 169 singular
vectors from the orthogonal matrices U to construct the training variable α.

5

Figure 1: Singular values of the snapshot matrix

The data can be generated by noting that, U is an orthogonal matrix. There-
fore, we have:

(U j)T (x) u(t, x) =

r∑
i=1

(U j)T (x)U i(x)αi(t), for any j

Since, (Uj)
T (x)Ui(x) = δij , where δij is the Kronecker delta function. We

immediately note that in discretized form:

(U j)T u(t, x̃) = αj(t)

Thus, generating the data αj(t). The procedure can be followed for j =
1, 2, ...r, to recover the α1(t), α2(t), alpha3(t) . . . αr(t).

Then, the solution is reconstructed for different choice of reduced dimension
r. We note that, for the present problem, only three singular vectors are nec-
essary to obtain a close approximation of the solution. As shown in Figure 2,
the reconstruction using 3 singular vectors greatly overlap with the true solu-
tion, and the reconstruction using 2 singular vectors shows significant numerical
errors.

6

(a) 2 singular vectors (b) 3 singular vectors

Figure 2: Reconstruction of the solution vs. true solution: A look into the effect
of choosing different r for model reduction

We thus select the first 3 singular vectors from the orthogonal matrices U to
construct the training variable α in many of our numerical experiments later.

3.3 Physics informed neural network

While deep neural network is a commonly-implemented model, it has disad-
vantages over predicting a solution with output dimension significantly greater
than the input dimension. We thus impose a physics term as the model con-
straint added to the loss function for the deep neural network to improve the
prediction.

Let us consider constructing a neural network model fNN : R → Rr that
predict α(tk) by learning a training data set S = {tm,αm}Ntrain

m=1 . Herein, our
interest is k > Ntrain with Ntrain, while k 6 Ntrain is relatively easy to estimate
by fNN. Note that the former corresponds to an extrapolation for forecasting
approximated solutions of Eq. 1. To investigate this, we use a test data set,
T = {tl,αl}Nl=Ntrain+1. In general, it is very hard to achieve a good accuracy
in terms of T , since fNN typically gives excellent accuracy for interpolating the
solutions. Furthermore, since we consider r > 1 in most cases, the dimension
of output α ∈ Rr is larger than that of the input tm ∈ R. This situation is
ill-posed and is therefore hard/impossible to construct a good surrogate model.
The basic idea of physics-informed neural network (PINN) is to regularize the
problem by adding residuals of the original PDE into the loss function of the
fNN. Based on this, we use the following loss function:

L =
1

Ntrain

Ntrain∑
m=1

‖αm−fNN(tm)‖2 +
η

N

N∑
n=1

‖un+1−un +∆tAun−∆tfn‖2, (7)

where η > 0 is a parameter to control the contribution of the residual of the
PDE.

7

4 Numerical Experiments and Results

The function we are using as the forcing function of the advection equation in
this set of numerical experiments is f(x, t) = 6ax such that the true solution to
the PDE is

u(x, t) = sin(2π(x− at)) + 3x2.

The true solution in later paragraphs will be referring to the solution produced
by this function.

4.1 Boundary Conditions and Initial Conditions

As we assume the knowledge of the initial condition and the boundary condi-
tions when we are given a real-world data matrix, the data for our numerical
experiments are self-generated. We thus set the boundary conditions and the
initial condition to be the true solutions during the discretization step to ensure
accuracy.

Figure 3 plots the solution at time t = 1 obtained from the upwind-scheme
using the true solution as the initial condition and boundary conditions. As
the reconstructed numerical solution greatly overlaps with the true solution, we
can conclude that this selection of method and boundary conditions accurately
discretizes the PDE equation.

Figure 3: True solution vs. Numerical solution with different boundary condi-
tions

An example of non-ideal boundary condition is the periodic boundary con-
dition. Even though it is commonly used in neural network problems, it shows
significant accumulation of errors during the implementation of our problem
and would result in Figure 3 (b) below compares the true solution with the
numerical solution constructed with periodic boundary conditions. The error is
significant in contrast to Figure 3 (a) while the only difference between the two
sets of numerical experiments are the boundary conditions.

8

4.2 Hyperparameters

To tune the PINN to produce the best predictions, there are 6 parameters that
we adjust during the numerical experiments.

1. model constraint parameter

2. number of epochs

3. batch size

4. learning rate

5. number of layers

6. number of neurons in each layer

4.3 Prediction within the given time range of training
data set

We first test the ability of a basic neural network to predict solutions within the
given data range.

In this experiment, we choose ∆t = 0.0005 among the time range of 0 to 1
second. The training data set is created with t = 0.0005n for n being an even
integer, and the testing data set is created with n being an odd integer.

As the resulting solutions are presented in a video format, we will choose
a time t among the testing data input range to show the comparisons. The
sample plot in Figure 4 shows that the predicted solution and the true solution
perfectly overlap, suggesting that the DNN is a useful approach.

9

Figure 4: True solution vs. Neural Network predicted solution within given data
range

4.4 Predictions outside the time range of the given train-
ing data set

4.4.1 Optimal result without physics term

While using the same set of training and testing data set as the previous section,
we search for another set of optimal hyperparameters with the model constraint
parameter set to 0, which means that this neural network does not contain any
physics term.

The most optimal parameters in this setting are 4 layers with 7 hidden nodes
each, 1000 epochs each with a batch size of 40, and learning rate of 0.001. The
resulting prediction is shown in Figure 5 (a). Even with the most optimal set
of hyperparameters, the prediction still shows severe deviation from the true
solution, suggesting the necessity of adding the physics term.

4.4.2 Optimal PINN result

For predictions outside of the data range, we use ∆t = 0.0001 as the time
step, t = [0, 0.0001, 0.0002, . . . 0.7] for creating the training data set, and t =
[0.7001, 0.7002, . . . 1] for creating the testing data set.

After testing different hyperparameters, the most optimal model we achieved
is a neural network with 800 epochs, each batch size being 50, with 4 layers each
with 7 hidden nodes, a learning rate of 0.01, and a model constraint parameter
of 0.05.

A solution achieved using the model described above is shown in Figure 5
(b). The model produces a test loss of 0.0282, predicting the solution with great

10

accuracy.

(a) 2 singular vectors (b) 3 singular vectors

Figure 5: True solution vs. Neural Network in forecasting outside training data
set: (a) Without the physics term; (b) With Physics term

4.5 Comparison Across Models

t Within data range Outside data range Model constraint

0.01 s 0.0189 0.0025 0.0043

0.5 s 0.0046 0.0037 0.0028

1.0 s 0.0047 0.0037 0.0028

5 Conclusion

With forecasting the solution of time-dependent PDE being a broad field of
study, the implementation of the residual as a physics term used for model
constraints in a loss function shows to be an effective method in making an
accurate prediction. In future works of this project, we aim to add another
variable, velocity a, as the input parameter of the neural network. We will
also look into comparing the Recurrent Neural Network model with the current
approach, and into solving higher dimension PDE problems.

References

[1] Gal Berkooz, Philip Holmes, and John L Lumley. The proper orthogonal
decomposition in the analysis of turbulent flows. Annual review of fluid
mechanics, 25(1):539–575, 1993.

11

[2] R. Chris Camphouse, James Myatt, Ryan Schmit, Mark Glauser, Julie
Ausseur, Marlyn Andino, and Ryan Wallace. A Snapshot Decomposition
Method for Reduced Order Modeling and Boundary Feedback Control.

[3] Richard Courant, Eugene Isaacson, and Mina Rees. On the solution of non-
linear hyperbolic differential equations by finite differences. Communications
on Pure and Applied Mathematics, 5(3):243–255, 1952.

[4] Weinan E and Bing Yu. The deep ritz method: A deep learning-based
numerical algorithm for solving variational problems. Communications in
Mathematics and Statistics, 6(1):1–12, Mar 2018.

[5] Mojtaba F Fathi, Isaac Perez-Raya, Ahmadreza Baghaie, Philipp Berg, Ga-
bor Janiga, Amirhossein Arzani, and Roshan M D’Souza. Super-resolution
and denoising of 4d-flow mri using physics-informed deep neural nets. Com-
puter Methods and Programs in Biomedicine, 197:105729, 2020.

[6] Xiaowei Jin, Shengze Cai, Hui Li, and George Em Karniadakis. Nsfnets
(navier-stokes flow nets): Physics-informed neural networks for the in-
compressible navier-stokes equations. Journal of Computational Physics,
426:109951, 2021.

[7] Suhas V. Patankar. Numerical Heat Transfer and Fluid Flow. Taylor and
Francis, 1980.

[8] Benjamin Peherstorfer and Karen Willcox. Dynamic data-driven reduced-
order models. Computer Methods in Applied Mechanics and Engineering,
291:21–41, 2015.

[9] M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural net-
works: A deep learning framework for solving forward and inverse problems
involving nonlinear partial differential equations. Journal of Computational
Physics, 378:686–707, 2019.

12

