
Recurrent Neural Network Models for Predicting Ordinary

Differential Equation Dynamics

Camille Renaud & Dr. Tan Bui-Thanh*

Oden Institute for Computational Engineering and Sciences
Moncrief Summer Internship

August 7, 2020

Abstract

Recurrent Neural Networks (RNN) have shown to have remarkable capabilities when it
comes to modeling sequential data and have been at the forefront of research in time-series
forecasting problems in a variety of fields. First looking at RNNs with a mathematical focus,
we saw whether claims of model stability from published and unpublished papers could be
rigorously defended. We then investigate the practical abilities of RNNs through their im-
plementation on certain systems of ordinary differential equations (ODE). We consider two
approaches of Long Short-Term Memory (LSTM) Recurrent Neural Network architectures for
predicting future time steps of solutions to first and second order ODEs as well as systems of
coupled ODEs to use as a guide for more complicated systems in the future. This project was
made possible by the wonderful experience of the Moncrief Summer Internship at the Oden
Institute of Computational Engineering and Sciences and under the mentorship and guid-
ance of Dr. Tan Bui-Thanh and the Probabilistic and High Order Inference, Computation,
Estimation, and Simulation Group.

1

Contents

1 Introduction 3

1.1 Mathematical Theory . 3

1.2 Long-Short Term Memory RNN . 4

1.3 Connections Between RNNs and ODEs . 5

1.3.1 Stability Analysis of Implicit Runge-Kutta and ODERNNs 6

2 Model Descriptions 6

2.1 Model 1 - Recursive Multi-Step LSTM . 6

2.2 Model 2 - One-Shot Multi-Step LSTM . 7

3 Experiments and Results 7

3.1 Model 1 on First and Second Order ODEs . 8

3.2 Model 1 on Coupled Systems of ODEs . 9

3.3 Model 2 on First and Second Order ODEs . 10

3.4 Model 2 on Coupled Systems of ODEs . 10

4 Discussion 11

4.1 Model Comparison . 12

4.2 Future Directions . 12

5 Conclusion 12

6 Appendix A 15

2

1 Introduction

Recurrent Neural Networks are a class of Neural Networks that are popular modeling techniques
for solving sequence learning problems. Vanilla RNNs have the capacity to accept both variable
length sequences on the input as well as variable length sequences on the output which makes their
applications incredibly versatile. Recurrent Neural Networks have been found to have remarkable
results in tasks such as machine translation, time-series forecasting, speech recognition and syn-
thesis, and numerous other problems. A relatively new field of study, however, is using RNNs
to predict solutions for systems of differential equations. Throughout this study, we consider two
models that utilize various popular techniques in RNNs and look at how they can predict the
solutions of ordinary differential equations.

1.1 Mathematical Theory

In general, a RNN has a recurrent core cell that takes some input x, feeds it into the RNN that
has an internal hidden state, which then is updated for every input x. This updated internal state
is then fed back into the model when it reads the next input. Also typically, the RNN will produce
an output y at each time step. Within the RNN, there is a recurrence relation that we can apply
to x as well as old hidden states to achieve the new hidden state as follows

ht = fW (ht−1, xt)

Where f is some function that depends on parameters W and accepts the previous hidden state
ht−1 and the current input vector xt at the current time-step t. Thus, the simplest functional form
of a RNN, referred to as a Vanilla RNN, is made up of the update of a hidden state ht and the
computation of an output yt

ht = tanh(Whh · ht−1 +Wxh · xt)
yt = Why · ht

where Whh, Wxh, and Why are weight matrices, and tanh represents the activation function that
squashes the hidden state between -1 and 1. The recursions above explain the forward pass of
the network that steps forward through time and then calculates a loss based on the training data
inputted. A helpful visualization of this idea of a recurrence relation is to unroll the computational
graph for multiple time-steps which allows for a visualization of the hidden-state. Below, figure
1 displays a graph of this sort in which each time-step is unrolled to see how the inputs, hidden
states, weights, and outputs move through an RNN.

Figure 1: The unrolled feed-forward structure of a Vanilla RNN

3

After computing the forward pass of the RNN and the loss associated with its prediction, we
then want to train the weights and effectively minimize the loss calculated. In RNNs, a common
technique is Backpropagation through time (BPTT) where you pass backwards through the entire
sequence of the RNN to compute the gradients of the output with respect to the weights, and then
update the weights. The back-propagation process is the same for artificial neural networks (ANN),
but with RNNs, the current time step is calculated based on the previous time step [7]. Computing
the gradients of the change in the error with respect to the change in weights, we can update the
weights the minimize the lose through multiple forward and backward passes. Ultimately, the
stochastic gradient descent algorithm finds the global minimum of the cost function which is your
optimized network that will produce the best results.

Just like ANNs, Vanilla RNNs suffer from the problems with learning long-term dependencies due
to vanishing or exploding gradients. These issues where the gradients getting either exponentially
small, or exponentially large makes it difficult for Vanilla RNNs to effectively update the weights
of previous time-steps. This issue happens because as the model backpropagates the error through
the time-steps, the gradients are being calculated via chain-rule, in which the gradients involve
multiple factors of the same weight matrix W .

There are various ways that this vanishing/exploding gradient problem is rectified, and it is still
an open problem today on how to best fix this issue. But one way that the problem has been
shown to improve is through a RNN architecture class called Long-Short Term Memory RNNs.

1.2 Long-Short Term Memory RNN

RNNs suffer from short-term memory where they are not able to carry information from earlier time
steps to later ones due to the vanishing gradient problem. One solution to this issue is a gradient
based method called Long Short Term Memory (LSTM) [6]. Instead of the simple recurrence
relation to update the hidden state in a Vanilla RNN, in an LSTM, there are two hidden states
that are maintained at every time-step. One is the ht which acts similar to the hidden state in
the Vanilla RNN, and the other is the cell state Ct. Both of these hidden states are computed
through four gates that serve to govern whether the input data should be added to the cell state
or forgotten. The mathematical structure is as follows

ft = σ(xt �Wfx + ht−1 �Wfh)

it = σ(xt �Wix + ht−1 �Wih)

ot = σ(xt �Wox + ht−1 �Woh)

C̃t = tanh(xt �Wcx + ht−1 �Wch

Ct = ft � Ct−1 + it � C̃t

ht = ot � tanh(Ct)

where the forget gate ft determines whether to erase the cell, the input gate it determines whether
to write the cell, the candiate cell gate C̃)t determines how much should be written to the cell,
the output gate ot determines how much to reveal to the hidden cell, � denotes element wise
multiplication, and + denotes the element wise addition.

4

The cell state is an internal state which allows for information to flow easily and relatively un-
changed from one cell to the next. In Figure 2 below, a diagram of the LSTM cell architecture.

Figure 2: The cell structure of an LSTM RNN architecture for time step t

During the backwards pass of computing the gradients of the cell state, the problem of vanishing
gradients is solved by design. As we backpropagate through the cell state, the only change that
happens to the gradient is an element-wise multiplication with the forget gate ft that can vary
between each time-step, instead of before when there was matrix multiplication by the same weight
matrix W which is what led to the exploding or vanishing gradients. This cell state can be
interpreted as an uninterrupted gradient flow.

1.3 Connections Between RNNs and ODEs

RNN models are extremely powerful for modeling sequence data, and while the study of ordinary
differential equations and dynamical systems is vast, the connections between RNNs and dynamical
systems have not been well explored. However, there are some comparisons one can make when
looking at the structure alone of RNNs and how they relate to the solutions of ODEs. Throughout
the 1990s, there was what was considered milestone research in training Neural Networks (NN) to
solve some of the issues of traditional numerical methods such as Shooting Method, Runge-Kutta
based methods, or Finite Difference Methods [13]. Using NNs were shown to be superior to these
traditional numerical methods in providing approximate solutions. There has also been recent
studies able to theoretically and structurally connect neural network architectures to the stability
and dynamics of ODEs in a new architecture of NNs called Neural Ordinary Differential Equations.
These Neural ODEs show the potential of differential equations within the structure of NNs for
time series data analysis [2, 3].

In the realm of RNNs, there has been much research surrounding its ability to handle long-term
dependencies, and in terms of ODEs, there are some very recent papers that are proposing a
redesign of traditional RNN architectures that leverages the mathematical foundation of ODEs to
optimize their performance [4].

5

1.3.1 Stability Analysis of Implicit Runge-Kutta and ODERNNs

Coming from a mathematical background, we began the summer looking at RNNs with a math
focus, and seeing if results in published and unpublished papers could be rigorously defended
[1, 3]. Particularly, we looked at the BN stability of a proposed architecture of a ODERNN that
mimicked implicit Runge-Kutta numerical method and looked to be able to carefully fill in the
missing details and prove the BN-stability of the general implicit Runge-Kutta numerical method
which then maps to the paper’s proposed architecture of RNN [1]. The proof of BN-stability for
implicit Runge-Kutta Method (Theorem 1) can be seen in Appendix A.

With the LSTM RNN architectures specifically designed to model temporal sequences, we consider
their capabilities in training on previous solution data to produce future solutions in time for various
ODE systems. Through this paper, a general study of two LSTM architectures are analyzed in
their ability to produce future solutions of systems of ordinary differential equation where hyper-
parameter and parameter optimization, and various data augmentation techniques were used to
minimize the error of our solutions.

2 Model Descriptions

Various approaches and modifications to LSTM RNN models have been found that adhere to
certain problems better than others [9, 11, 13]. As the problem of predicting or extending solutions
of ODEs is similar to time-series forecasting problems and can be formatted in various ways, there
are two approaches that were considered using standard LSTM architectures that have success with
their respective goals. The first approach being to extend an exact solution an arbitrary amount
by a recursive multi-step approach, so that the entire solution starting from initial condition is
extended one point at a time. The second approach has in mind the goal of extending a particular
part of the solution in a multi-step approach in which the solution of multiple time-steps is used
to predict the next entire time frame in a single-shot manner. Both of these models were tested on
varying types of ODEs including 1st and 2nd order ODEs, and systems of multiple coupled ODEs
as well.

2.1 Model 1 - Recursive Multi-Step LSTM

The first model that we consider in solving solutions of ODEs for future time-steps was a recursive
multi-step RNN model that learns to predict values over a future time period based on solution
training data of the past. This model takes previous solutions and information from the past
solutions to predict the next solution where the input for say time-step t is the output from a
previous time-step in the prediction set. The model’s architecture includes a data generator that
trains the model by unrolling the model and producing batches of data to train off of [11]. To
increase the robustness of this model, we also did not assume that the output for xt is always
xt+1. Instead, we randomly sampled an output from the set xt+1, xt+2, . . . xt+N where N is a small
window size.

We defined our hyper-parameters for this model including the number of unrollings which denotes
how many continuous time steps you consider for a single optimization step. Instead of standard

6

single-step LSTM models, as we optimize through BPTT, the model looks at many time-steps in
the past. The number of unrollings that optimized error on the ODEs was 100. Batch size, or how
many data samples you consider in a single time-step was determined through the trail process as
well. We determined that a large batch-size of 100 did the best for these types of problems. We
also considered number of layers of LSTMs to add and the number of neurons at each layer. Since
our dataset was relatively small, we found that only one layer of LSTMs was needed to produce
good results on our certain ODEs, and any more layers resulted in fast overfitting of the model.
A learning rate of 0.0001 was also selected for each of the examples.

2.2 Model 2 - One-Shot Multi-Step LSTM

The second model that we consider serves a slightly different purpose within the goal of solving
future solutions of ODEs. With this model, we wanted to be able to predict an entire range of
future values from multiple inputs through one-shot predictions where the model makes the entire
sequence prediction in a single step [9]. For example, given 100 time-steps of past solutions, the
model will predict the next 100 data points. This was done by implementing a Dense layer into
our model. For this model, a window object is created to split up our dataset into slices which
consist of training data and target data. The model is then trained on the training data and learns
to predict solutions given slices of the target data.

This is a slightly modified view of the problem, but the outcome can be looked at as the same
type of challenge of predicting future solutions of ODEs. For our model, we created windows of
size 200 where they were split into training data of size 100, and testing data of size 100. We also
determined a batch-size of 32, and the dense layer of size 100 optimized the loss. As these windows
are smaller than in Model 1, the visualizations will look slightly different, but the results can be
interpreted similarly.

3 Experiments and Results

In order to investigate the abilities of RNNs on predicting future solutions of certain ODEs, we
chose some simple examples of systems of ODEs that would challenge the models in different ways.
The systems of ODEs range from 1st order equations, to 2nd order forced systems, to systems
of multiple coupled ODEs all posed as initial value problems that have exact solutions. These
systems are described as follows [10, 12].

1st Order System:

2ty

t2 + 1
− (2− ln(t1 + 1))y′ = 0 y(5) = 0

7

2nd Order Systems:

a.) y′′ + 2y′ + 17y = −2 sin(3t) y(0) = 2, y′(0) = 2

b.)
1

2
y′′ + 8y = 10 cos(πt) y(0) = 0, y′(0) = 0

Coupled Systems:

Lotka-Volterra Equations:

dx

dt
= x(a− by) x(0) = 1.5

dy

dt
= −y(c− dx) y(0) = 1

Chemical Reaction System

dA

dt
= −k1AB A(0) = 1

dB

dt
= −k1AB − k2BC B(0) = 1

dC

dt
= k1AB − k2BC C(0) = 0

dD

dt
= k2BC D(0) = 0

Throughout all of the examples in both models, the data was created from the exact solution
equations of each of these systems and was of size 3000 points within their varying time frames.
the first 2000 data points were for training, and the last 1000 points were set aside for testing and
validation in each model.

3.1 Model 1 on First and Second Order ODEs

For the implementation of our examples into the first model, we considered the entire training
dataset for each run, and the entire testing dataset for what we wanted the model to predict. For
the first order and second order examples, training was relatively similar for each model. The first
order model converged in approximately 10 epochs, while the second order model a.) converged
in 30 epochs and the second order model b.) converged in 20 epochs. All of these examples were
evaluated using the mean relative point-wise error, of which, they all were consistently under 7%
mean relative point-wise error.

8

The 1st order ODE prediction had 0.820% mean relative point-wise error, the 2nd order ODE
system a.) had a 3.58% mean relative point-wise error, and the 2nd order ODE system b.) had a
6.67% mean relative point-wise error. The first order equation can be seen as the minimal working
example where there are no features the model is challenged with. The two 2nd order equations
are more involved forced harmonic oscillators with different types of challenges for the model to
handle. One has information in the past that no longer matters, and the other has a repetition of a
longer sequence that it needs to capture. While still fairly basic, these various equations captured
the models ability to produce good predictions on working examples so that we can conclude that
the model has potential to be used for more complicated systems or observational data problems.

3.2 Model 1 on Coupled Systems of ODEs

Next, we consider systems of coupled ODEs to see how the model does on models that, while
simplified, can be seen as models for real world applications. For the two systems of coupled
ODEs, we had to modify the model so that it could accept vector inputs and effectively be trained
on 1-dimensional vectors instead of singular points. This added a challenge of robustness to the
model as all equations had to be run on the same parameters and hyper-parameters. The first
coupled system of ODEs was a classic Lotka-Volterra equations (a.) which consist of a pair of first-
order non-linear ordinary differential equations. They represent a simplified model of the change
in populations of two species which interact via predation. Graphed was both solutions on t, as
well as the solutions graphed on each other showing the cyclical nature of simplistic predator-prey
models. The second system (b.) models a chemical reaction network from species balances. Where
as the chemicals react, species A and B react to create chemical C which then creates D in varying
amounts and speeds based on initial conditions and parameters k1 and k2.

For these two systems, there is an added challenge from the single equation systems in which the
model must train on all of the curves using the same parameters and hyper-parameters. For the
Lotka-Volterra system, the solutions are essentially the same, but shifted. The system modeling a
chemical reaction between four species of chemicals however exhibit different behaviors that was

9

more challenging to find a successful combination that optimized the errors below 10%. After trails
of different parameter combinations, the model was able to produce errors of 1.36% and 1.72%
mean percent errors respectively for the prey and predator solutions, and for the chemical reaction
system, the errors were 2.16%, 5.86%, 3.51%, and 0.149% for species A, B, C, and D respectively.

3.3 Model 2 on First and Second Order ODEs

For Model 2, we use the same equations, but view the problem in a slightly different way which
results in different visualizations of the solutions. For this model, the focus was on developing an
approach that could output the entire prediction sequence in a one-shot manner, where multiple
inputs lead to multiple outputs at a time. With this method, since the generated slices of data
were less than the total training data set, there were multiple slices created in the target data to
test the model on. With this in mind, we graphed 3 prediction solutions per system to see how the
model did at different points in the testing data. Below are the graphs of a slice of the target data
that the solution was predicted upon which is superimposed on the exact solutions for reference.

For Model 2, the 1st order ODE prediction had 0.121% mean relative point-wise error, the 2nd
order ODE system a.) had a 7.04% mean relative point-wise error, and the 2nd order ODE system
b.) had a 6.77% mean relative point-wise error. While slightly worse for the second order ODE
b.), this One-Shot model does comparatively well based on Model 1. Similarly to model 1, the first
order equation is seen as a simple working example, and then two second order equations were
slightly extended working examples to challenge the model a bit more.

3.4 Model 2 on Coupled Systems of ODEs

For the second model, as the goal was one shot predictions, we were able to implement the coupled
system of 4 ODEs that modeled a chemical reaction as 4 separate equations, but not as vector
solutions since our model was specific to a single input, for one-shot solutions. Because of the
fact that this system is now essentially more singular ODEs, we only consider the results from
the coupled system modeling a chemical reaction between 4 chemicals, and leave out the Lotka-
Volterra system from the results. For the chemical reaction system, the 4 species solutions were
predicted in the one shot manner and the graphics below display 3 different slices of each of the
four species solutions that trained on the training data.

10

The model did quite well on the above ODEs with errors being 0.235%, 0.328%, 0.803%, and 2.24%
respectively for chemicals A, B, C, and D. Once we had these slices, we thought it was beneficial
to be able to visualize what these predictions look like on the graph of the 4 coupled solutions.
Below displays the figure of the solutions with 4 one shot predictions each corresponding to a the
solutions to the ODEs of each chemical in the chemical reaction.

Figure 3: One-Shot Predictions of each chemical species superimposed on the true solutions

Being able to implement all four ODEs at once into the model would be an interesting next step
for the future directions of this project. This would involve a new model that can take in multiple
inputs, output multiple outputs, all in the one shot manner that the model currently does for
singular ODEs.

4 Discussion

RNN models have shown to have remarkable learning power when it comes to sequential data.
In looking at the connections between RNNs and ODEs, we can see that RNNs that complete
time-series predictions have lots of potential for being able to learn the dynamics of differential
equations of future time-steps. Throughout this study, we considered two models that, through
different approaches, successfully predicted the future solutions of ODEs.

11

4.1 Model Comparison

Model 1 used a recursive multi-step approach in which solutions were predicted using both the
training data, as well as sampling from the predictions of prior time steps and using them as the
input for the prediction at the following time steps. This model did well with both singular ODEs
as well as systems of multiple coupled ODEs, and was able to be modified to take in vectors as
inputs instead of singular values.

On the other hand, Model 2 used a one-shot multi-step approach in which the entire solution
is predicted at the same time. This model was more complex as there were dependencies being
learned between inputs and outputs as well as between outputs and outputs. Model 2 did well
with the singular ODEs, but could not take in vectors while keeping the same model architecture.
Thus, looking at the coupled ODE systems, they were analyzed separately per individual solution,
and put together after training was completed. Looking at just the chemical reaction system of 4
ODEs, the model did very well on these equations just as it did on the other singular ODEs.

4.2 Future Directions

With such a broad and expandable topic, there is an unlimited number of future directions that
this project could be expanded to. The first direction that could be taken is to try to create a multi-
input one-shot model that successfully completes the task that Model 1 did, but in the approach
that Model 2 took predicting the entire solution in a one shot manner. Our investigation into the
abilities of various approaches of LSTMs to predict certain systems of ODEs can hopefully be used
as a guide to expand their ideas to real world applications and data. Another interesting direction
that one could take is to look at architectures of RNNs that resemble the growing topic of Neural
ODEs that use numerical ODE solver methods like Runge Kutta to inspire the architecture and
investigate this type of architecture’s ability to predict differential equation solutions [13]. With
real world applications in mind, we could also consider looking at solutions of Partial Differential
Equations (PDE) such as the acoustic wave equation where solutions would be 2-dimensional
solution snapshots of acoustic waves [6].

5 Conclusion

In the conclusion of this summer research experience, I would also like to reflect on the summer
and program as a whole. Throughout the 10 weeks, I have been repeatedly amazed at how much
I am learning, and how quickly time can go by when being challenged everyday. As an Applied
Mathematics major, one of my main goals for the summer was to get immersed into the field of
Computational Mathematics and Sciences, and I don’t think I could have chosen a better program
to meet those goals. At the beginning of the summer, the focus of my internship was making these
connections between my mathematical point of view and the computational point of view of the
Pho-Ices Group. This project, while constantly challenging, was a great mixture of connecting
my knowledge of differential equations and the mathematical theory behind stability, and the
computer modeling aspects of RNNs that have complexities that cannot necessarily be explained
by math alone. Coming to look at RNNs from a mathematical focus helped me recognize the
truly interdisciplinary aspects of applied math, and get inspired to use mathematical theory to

12

solve real world problems in the future. I would like to thank my advisor Dr. Tan Bui-Thanh for
constantly challenging me to think in different ways and for his wisdom, generosity, and patience
with me throughout the summer. I would also like to thank the Oden Institute for its support of
undergraduate students and willingness to modify and continue this incredible program even in
these uncertain times.

13

References

[1] Muphy Yeuzhen Nui, Isaac Chuang, and Lior Horesh. Recurrent Neural Networks in the Eye
of Differential Equations. arXiv:1904.12933, 2019.

[2] Mansure Habiba and Barak Pearlmutter. Neural Ordinary Differential Equation Based Recur-
rent Neural Network Model. Neural Information Processing Systems (NeurIPS), 2018.

[3] Bo Chang, Minmin Chen, Eldad Haber, and Ed Chi. AntisymmetricRNN: A Dynamical Sys-
tem View on Recurrent Neural Networks. International Conference on Learning Representations
(ICLR), 2019.

[4] Ricky Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural Ordinary Dif-
ferential Equations. Neural Information Processing Systems (NeurIPS), 2018.

[5] Catherine Higham and Desmond Higham. Deep Learning: An Introduction for Applied Math-
ematicians. Society for Industrial and Applied Mathematics (SIAM), 2019)

[6] Hasim Sak, Andrew Senior, and Francoise Beaufays. Long Short-Term Memory Recurrent Neu-
ral Network Architectures for Large Scale Acoustic Modeling. International Speech Communication
Association, 2014.

[7] John Miller and Moritz Hardt. Stable Recurrent Models. ICLR, 2018.

[8] Martin Arjovsky, Amar Shah, and Yoshua Bengio. Unitary evolution recurrent neural networks.
In ICML, pp. 1120–1128, 2016.

[9] TensorFlow Authors. Tensorflow timeseries forecasting. TensorFlow: Large-Scale Machine
Learning on Heterogeneous Distributed Systems, 2015.

[10] Thomas Judson. The Ordinary Differential Equations Project. Department of Mathematics
and Statistics, Stephan F. Austin State University, 2018.

[11] Thushan Ganegedara. Stock Market Predictions with LSTM in Python. DataCamp, 2020.

[12] Paul Dawkins. Exact Equations of First Order DE’s. Pauls Online Math Notes - Lamar
University, 2018.

[13] Coryn Bailer-Jones, David MacKay, and Philip Withers. A Recurrent Neural Network for
Modelling Dynamical Systems. Computation in Neural Systems, 1998

[14] Kevin Burrage and J. C. Butcher. Stability Criteria for Implicit Runge-Kutta Methods. Society
for Industrial and Applied Mathematics (SIAM), 1979.

14

6 Appendix A

Definitions

We define the general implicit Runge-Kutta method as

~un = ~un−1 + δ

m∑
j=1

bjf(tn−1 + cjδ,~vj)

~vi = ~un−1 + δ

m∑
j=1

aijf(tn−1 + cjδ,~vj) for n, i = 1...m

Where ~vi denotes the intermediate approximations used in the computation of ~un from ~un−1.

The coefficients aij , bj , and cj (i, j = 1 · · ·m) are arranged in the Butcher tableau

c1 a11 a12 . . . a1m
c2 a21 a22 . . . a2m
...

...
...

. . .
...

cm am1 am2 . . . amm

b1 b2 . . . bm

which is a simple mnemonic device for specifying a Runge–Kutta method.

We define the symmetric positive semi-definite matrix M with components of the form

M = mij = biaij + bjaij − bibj

We also define test equations of the form

y′(x) = f(x, y(x)), f : RN+1 → RN , (1)

satisfying the monotonicity condition where the inner product between variable vector and function
vector is less than or equal to zero

〈f(x, y)− f(x, z), y − z〉 ≤ 0 (2)

for all y, z ∈ RN and x ∈ R

Definition. Implicit Runge-Kutta method is BN-stable if for two solution sequences · · · , ûn−1, ûn · · ·
and · · · , un−1, un · · · applied to any problem (1) where (2) holds, ||ûn − un|| ≤ ||ûn−1 − un−1||.

Lemma 1. If aij , bj ∈ R, then
∑m

i=1

∑m
j=1 biaij =

∑m
i=1

∑m
j=1 bjaji

15

Proof. Observe that

m∑
i=1

m∑
j=1

biaij =b1a11 + b1a12 + · · · b1a1m

b2a21 + b2a22 + · · · b2a2m

b3a31 + b2a32 + · · · b3a3m

· · · · · ·+ · · · · · ·+ · · · · · ·+

bmam1 + bmam2 + · · · bmamm

and

m∑
i=1

m∑
j=1

bjaji =b1a11 + b2a21 + · · · bmam1

b1a12 + b2a22 + · · · bmam2

b1a13 + b2a23 + · · · bmam3

· · · · · ·+ · · · · · ·+ · · · · · ·+

b1a1m + b2a2m + · · · bmamm

We can see, through simple observation, that these two equations produce the same output. There-
fore,

∑m
i=1

∑m
j=1 biaij =

∑m
i=1

∑m
j=1 bjaji.

�

Theorem 1. If the implicit Runge-Kutta method satisfies b1, b2, · · · bm ≥ 0, and M is positive
semi-definite, then the method is BN-stable.

Proof. Let ~yn = ûn−un, ~Kj = v̂j−vj , ~y0 = ûn−1−un−1, ~wj = δ(f(tn−1+cjδ, v̂j)−f(tn−1+cjδ, vj)
for n, j = 1 · · ·m .

Taking the difference between Runge-Kutta formulas for ûn and un gives

~Ki = ~yo +

m∑
j=1

aij ~wj

~yn = ~y0 +

m∑
j=1

bj ~wj .

16

Multiplying each side by itself in ~yn gives

~yn · ~yn = (~yo +

m∑
j=1

aij ~wj) · (~yo +

m∑
j=1

aij ~wj)

= ~y0 · ~y0 + (

m∑
j=1

aij ~wj) · ~y0 + (

m∑
j=1

aij ~wj) · ~y0 + (

m∑
j=1

aij ~wj) · (
m∑
j=1

aij ~wj).

Simplifying both the right hand side and the left hand side component-wise gives

(~yn) · (~yn) =

m∑
i=1

yni · yni =

m∑
i=1

y2ni = y2n1 + y2n2 + · · · = ||~yn||2

(~y0) · (~y0) =

m∑
i=1

y0i · y0i =

m∑
i=1

y20i = y201 + y202 + · · · = ||~y0||2

(

m∑
j=1

aij ~wj) · (~y0) = (b1 ~w1) · (~y0) + (b2 ~w2) · (~y0) + · · · = b1(~w1 · ~y0) + b2(~w2 · ~y0) · · · =
m∑
i=1

bi〈~y0, ~wi〉 =

m∑
i=1

bi~y0 · ~wi

(

m∑
j=1

aij ~wj) · (
m∑
j=1

aij ~wj) =

m∑
i=1

m∑
j=1

bi ~wi · bj ~wj =

m∑
i=1

m∑
j=1

bibj ~wi · ~wj .

Thus,

||~yn||2 = ||~y0||2 + 2

m∑
i=1

bi~y0 · ~wi +

m∑
i=1

m∑
j=1

bibj ~wi · ~wj

.

Note that since all values are real, inner products are the same at standard vector multiplication
and hence 〈x, y〉 = x · y = y · x = y, x〉 .

Now take the inner product of ~Ki and ~wi:

~Ki · ~wi = (~y0 +

m∑
j=1

aij ~wj) · ~wi

= ~y0 · ~wi +

m∑
j=1

aij ~wj ~wi.

Solving for ~y0 · ~wi gives

~y0 · ~wi = ~Ki · ~wi −
m∑
j=1

aij ~wj ~wi

and substituting what we just determined for ~y0 · ~wi into ||~yn||2 then returns

||~yn||2 = ||~y0||2 + 2

m∑
i=1

bi

 ~Ki · ~wi −
m∑
j=1

aij ~wj ~wi

+

m∑
i=1

m∑
j=1

bibj ~wi · ~wj

. Thus

||~yn||2 = ||~y0||2 + 2

m∑
i=1

bi ~Ki ~wi − 2

m∑
i=1

m∑
j=1

biaij ~wi ~wj +

m∑
i=1

m∑
j=1

bibj ~wi ~wj . (3)

17

By Lemma 1, we have established that
∑m

i=1

∑m
j=1 biaij =

∑m
i=1

∑m
j=1 bjaji, and since ~wi ·

~wj does not change value when the dummy variable is changed, we can also conclude that∑m
i=1

∑m
j=1 biaij ~wi ~wj =

∑m
i=1

∑m
j=1 bjaji ~wi ~wj . Now, looking at the last two components of the

right hand side of equation (3), we can rearrange as follows:

−2

m∑
i=1

m∑
j=1

biaij ~wi ~wj +

m∑
i=1

m∑
j=1

bibj ~wi ~wj = −

 m∑
i=1

m∑
j=1

biaij ~wi ~wj +

m∑
i=1

m∑
j=1

bjaji ~wi ~wj −
m∑
i=1

m∑
j=1

bibj ~wi ~wj

= −

 m∑
i=1

m∑
j=1

biaij ~wi ~wj + bjaji ~wi ~wj − bibj ~wi ~wj

= −

 m∑
i=1

m∑
j=1

(biaij + bjaji − bij) · ~wi ~wj

= −

 m∑
i=1

m∑
j=1

mij · ~wi ~wj

 .

Thus,

||~yn||2 = ||~y0||2 + 2

m∑
i=1

bi ~Ki · ~wi −
m∑

i,j=1

mij ~wi · ~wj

.

For stability to hold, we must show that 2
∑m

i=1 bi
~Ki · ~wi −

∑m
i,j=1mij ~wi · ~wj ≤ 0.

For the first term, 2
∑m

i=1 bi
~Ki · ~wi ≤ 0 because of the conditions

¯
j ≥ 0 and the monotonicity

condition set on f is exactly ~Ki · ~wi ≤ 0.

For the second term, we want to show that
∑m

i,j=1mij ~wi · ~wj ≥ 0. Recall that M is a symmetric
positive-semi-definite matrix with components mij .

Let W be the m×m matrix with components Wij = ~wi · ~wj . Observe that since M is real,

m∑
i,j=1

mij ~wi · ~wj =

m∑
i,j=1

mij ·Wij

= tr(MTW)

= 〈M,W 〉F

where 〈·, ·〉F denotes the Frobenius norm. First, we show that matrix W is positive semi-definite.

Let V be a matrix whose rows are ~wi, then W = V V T . W is said to be positive semi-definite if the
scalar xTWx is non-negative for every real, non-zero column vector x. Note that xTWx = xTV V Tx

18

and thus it holds that

xTV V Tx = (V Tx)T (V Tx)

= (V Tx)2

=

(
m∑
i=1

xiwi

)2

= ||V Tx||2F ≥ 0.

Therefore, matrix W = V V T is positive semi-definite. Since W and M are both positive semi-
definite matrices, we can prove that

∑m
i,j=1mij ·Wij ≥ 0 as follows.

Observe that 〈M,W 〉F = Tr(MWT) = Tr(M
1
2M

1
2W

1
2W

1
2), and through the cyclical properties

of Trace, Tr(M
1
2M

1
2W

1
2W

1
2) = Tr(M

1
2W

1
2M

1
2W

1
2) .

Let matrix A = M
1
2W

1
2 . Since the square root of a positive semi-definite matrix is symmetric,

Tr(M
1
2W

1
2M

1
2W

1
2) = Tr(AAT)

= ||A||2F ≥ 0.

Thus,
∑m

i,j=1mij ~wi · ~wj ≥ 0. Hence, ||~yn||2 ≤ ||~y0||2 and therefore ||ûn − un|| ≤ ||ûn−1 − un−1||
which is the required result for the BN-stability of the method to hold.

�

19

